ریاضی علم دوست داشتن
«ریاضیات محض بیشتر به قضایا و استدلالها ، منطق موجود در آنها و چگونگی اثباتشان میپردازد اما در ریاضیات کاربردی چگونه استفاده کردن و به کارگرفتن قضایا، آموزش داده میشود، به عبارت دیگر در این شاخه، کاربرد ریاضیات در مسائل موجود در جامعه بیان میگردد»
«وقتی صحبت از ریاضی محض میشود نباید تصور کرد که تنها باید در گوشهای نشست و به حل مسائل ریاضی پرداخت بلکه این علم ، بخصوص در مدارج بالا، ارتباط نزدیکی با طبیعت دارد به عبارت دیگر ایدههای ریاضی از ذهن پژوهشگران نمیروید بلکه ریاضیدانها غالبا الهام خود را از طبیعت میگیرند و به قول «ژان باپتیت فوریه» ریاضیدان مشهور قرن نوزدهم فرانسه «تعمق در طبیعت، پربارترین منابع اکتشافات ریاضی است.»
عموما ریاضیات کاربردی به شاخهای از ریاضی گفته میشود که کاربرد علمی مشخصی داشته باشد برای مثال در اقتصاد، کامپیوتر،فیزیک و یا آمار و احتمال کاربرد داشته باشد و ریاضی محض نیز به شاخهای گفته میشود که به نظریهپردازی ریاضی میپردازد اما باید توجه داشت که امروزه این دو گرایش آنچنان در هم ادغام شدهاندکه مرزی را نمیتوان بین آنها مشخص کرد.
زیا گاه یک تئوری کاملا محض وارد مرحله کاربردی شده و چون در عمل با مشکل روبرو میشود، بار دیگر به حوزه تئوری برمیگردد و در نهایت پس از رفع نقایص، دوباره وارد مرحله کاربردی میشود. یعنی یک تعامل و ارتباط دوجانبهای بین ریاضی کاربردی و محض وجود دارد و هریک از این دو شاخه، از تجربیات شاخه دیگر به بهترین نحو استفاده میکند و به همین دلیل یک ریاضیدان موفق باید از هر دو شاخه اطلاع داشته باشد.»
«وقتی صحبت از ریاضی محض میشود نباید تصور کرد که تنها باید در گوشهای نشست و به حل مسائل ریاضی پرداخت بلکه این علم ، بخصوص در مدارج بالا، ارتباط نزدیکی با طبیعت دارد به عبارت دیگر ایدههای ریاضی از ذهن پژوهشگران نمیروید بلکه ریاضیدانها غالبا الهام خود را از طبیعت میگیرند و به قول «ژان باپتیت فوریه» ریاضیدان مشهور قرن نوزدهم فرانسه «تعمق در طبیعت، پربارترین منابع اکتشافات ریاضی است.»
عموما ریاضیات کاربردی به شاخهای از ریاضی گفته میشود که کاربرد علمی مشخصی داشته باشد برای مثال در اقتصاد، کامپیوتر،فیزیک و یا آمار و احتمال کاربرد داشته باشد و ریاضی محض نیز به شاخهای گفته میشود که به نظریهپردازی ریاضی میپردازد اما باید توجه داشت که امروزه این دو گرایش آنچنان در هم ادغام شدهاندکه مرزی را نمیتوان بین آنها مشخص کرد.
زیا گاه یک تئوری کاملا محض وارد مرحله کاربردی شده و چون در عمل با مشکل روبرو میشود، بار دیگر به حوزه تئوری برمیگردد و در نهایت پس از رفع نقایص، دوباره وارد مرحله کاربردی میشود. یعنی یک تعامل و ارتباط دوجانبهای بین ریاضی کاربردی و محض وجود دارد و هریک از این دو شاخه، از تجربیات شاخه دیگر به بهترین نحو استفاده میکند و به همین دلیل یک ریاضیدان موفق باید از هر دو شاخه اطلاع داشته باشد.»
روزگار خوش 
+ نوشته شده در یکشنبه ۱۷ تیر ۱۳۸۶ ساعت 17:56 توسط Siavash.math
|